

CHAPTER 1

Overview of RFID Technologies

Dr BORIS ANTIĆ

Faculty of Technical Sciences University of Novi Sad

Serbia

About the author

Dr. Boris Antic Faculty of Technical Sciences, University of Novi Sad, Serbia

Electrical sensors

University of Novi Sad, School of Engineering, Novi Sad, Serbia

Chair for electrical measurements

2001-2002 DAAD scholarship at the Lehrstuhl für Agrarsystemtechnik, TU München in Freising-Weihenstephan, beim prof. Hermann Auernhammer

2006-2016 BioSense Centre of the FTN, now BioSense Institute

Overview

- RFID technology overview
- Passive tag RFID technology
 - Inverse RF tags
- Active tag RFID technology
- Sensors based on RFID
 - Applications in agriculture
 - Batteryless RFID sensors

*** - presentation of some original research

Two parts: tags and interrogators

Tags (labels) attached to objects to identify them

- Substrate
- Microchip (memory, processing, modulation, demodulation)
- Antenna
- Active (periodically transmit ID signal)
- Battery-assisted passive (transmit only when invoked)
- Passive (harvest or modulate energy)

Interrogators send signals to tags and read response

- Active Reader Passive Tag (ARPT) "passive tag RFID"
- Passive Reader Active Tag (PRAT)
- Active Reader Active Tag (ARAT)
 Battery-Assisted Passive (BAP)

BAP and ARAT are more similar to ARPT then to PRAT

Interrogation and response

Important remark

Size matters!

Smaller tags – smaller C and L – operate on higher frequencies

Low-frequency (120–150 kHz)

- Unregulated
- Range <10 cm</p>
- Low data rates, <1 kbits/s</p>
- Animal identification, factory data collection

Tag price: 1-10 €

8

- High-frequency (13.56 MHz)
 - ISM band
 - Range 0.1–1.5 m
 - Low data rates, 25 kbits/s
 - Smart cards, memory cards
 - Tag price: 0.05-50 €

- Ultra-high-frequency (865–868 MHz EU 902–928 MHz North America)
 - ISM band
 - Range 1–12 m
 - Moderate data rates, 100 kbits/s
 - Smart cards, memory cards, anti theft
 - Tag price: 5-10 €

Most passive tags are of this type

Microwave (2450–5800 MHz and 3.1–10 GHz)

ISM band

- 2450–5800 MHz: 1–2 m 802.11 WLAN, Bluetooth
- 3.1–10 GHz up to 200 m
- High data rates, 10 Mbits/s
- Tag price: 25 €

Most active tags are of this type

- mm-wave (2.45 and 5.8 GHz)
 - ISM band
 - 10-200 m (with use of retro directive backscatter)
 - High data rates, 50+ Mbits/s
 - Miniaturization, IoT, Implants
 - Tag price: 50+ €

Source: Wikipedia

TFID - 2020

• MIT produced 1.6 mm² THz tag

- Actually it is 260 GHz
- No external antenna
- 2×2 antenna array backscatter communication
- Range: 5 cm

Ruonan, Han et al. (2021). <u>"MOS THz-ID: A 1.6-mm² Package-Less</u> <u>Identification Tag Using Asymmetric Cryptography and 260-GHz Far-</u> <u>Field Backscatter Communication</u>". 2021 IEEE International Solid- State Circuits Conference.

Passive RFID technology

Analogue

Antenna only – RF tags (no ID)

Digital

- ID and other data sent requires a chip
- Data imprinted into signal via modulation

Memory onboard RFID tags

- Comprise 4 segments:
 - TID (Tag identifier)
 - EPC (Electronic product code)
 - USER
 - RESERVED
- 32 bits to 2 kB

- Read only unique serial number written during manufacturing
- Write once read many (WORM) User can setup memory content once
- Read / write (R/W) Unique ID is usually non-erasable, but secondary information can be rewritten many times (WE NEED THESE FOR SENSORS)

Antenna type 1

- Low-frequency (124 kHz 135 kHz)
- Inductive coupling proximity field for power
- Rounded winding
- Used for passive tags

Antenna type 2

- High-frequency (13.56 MHz)
- Inductive coupling proximity field to gain power
- Round or square windings
- Used for passive tags
- In detection systems destruction of the capacitor deactivates the tag

Antena type 3

- UHF (860 MHz 960 MHz)
- Backscatter
- Dipole antenna

UHF Dipolne RFID tag antene

speed of light frequency (Greek letter, nu) $C = \lambda v$ wavelength

Half-Dipole

- Length equal to half wavelength
- Between 16 and 17 cm
- Increased resistance

Modified Half-Dipole

- Length 9.2 cm
- Negative reactance requires modifications (extra inductance or capacitance)

Short Dipole

- Length 1/10 of the wavelength
- Even more compensation required

Antenna modifications – Fat tag

- Massive quantity of metal
- Fat conduction lines
- Substrate used as dielectric
- Huge capacitance, low inductance

FAT TAGS

Antenna modifications – Tip loaded

- Similar to "Fat" dipol, but only at the ends
- Added menders in the middle to increase inductivity (reduce frequency)

TIP-LOADED TAGS

Antenna modifications – Meander antennas

- Using meander to squeeze in as much wire as possible
- Meanders reduce frequency
- Number of meanders is more important then their shape (explosion of patents)

Some non-typical antenna shapes

"Smartrack Frog"

Speaking of non-typical... Iverse RF tags

- Normal scenario of operation: RF tag is active until no longer needed (destroyed)
- The challenge: How to make an RF tag inactive until you need to activate it
- Additional challenge: Can you make it recurrent?

Inverse RFID -concept #1

Create the capacitor from a conductor by burning it with a strong current

Issue: reliability – destructive phenomena are difficult to control

Inverse RFID –concept #2

Bridge the capacitor with a thermo-fuse

Inverse RFID –concept #2

Bridge the capacitor with a contact switch

Comb capacitor – single side printing
Patented solution in 2021

Testing and improving

Later made reversible

Active RFID technology

Use energy from battery to constantly beacon its status

- Can be useful in some applications
- Energy very demanding
- Topic for another day

Sensors based on RFID

Analogue – use physical quantity to modify frequency response (require a spectral analyzer)

Digital – have A/D converters, modify memory content

- Passive only one memory value
- Active measurement history

Analogue sensors

- UHF dipole antenna is made of materials that change ε_r or μ_r when exposed to some physical quantity (temperature, humidity, pressure, concentration of some chemical compound etc.)
 - Resonant frequency is changing
- Modification of resistance also possible dampening of oscillations
 - Resonant frequency the same, but with smaller or higher peak
 - Best technology carbon nano-tubes
 - Issue of detector proximity

Frequency (MHz)

Digital sensors

Response in a digital format – invariant to geometry

- Complex chip structure
- The smaller the more efficient
- 32 bits ID + one value
- 2 kB ID + series of values

Applications

RFID Sensors							
Healthcare	Food Quality	Agriculture	Automotive	Structural Health Monitoring	Space	Wereable & Implantable	Localization & activity monitoring
						Ľ	Ø
 Body temperature monitoring Blood glucose monitoring Activity and gesture sensing Sleep disorders 	 Meat, fish, vegetable freshness monitoring Expiration date monitoring 	 Soil moisture monitoring Precision irrigation Agro-food supply chain monitoring Vineyard monitoring Cold chain monitoring 	Automatic production monitoring Security of infants Tire pressure sensors Vehicles road distance	 Metal and concrete crack monitoring Structural damage detection Monitoring of structural movements Corrosion monitoring 	 Temperature monitoring CO₂ monitoring Battery level monitoring 	 human movements Heart & breath frequency monitoring monitoring body areas and vascular prosthesis 	 human movements Heart & breath frequency monitoring monitoring body areas and vascular prosthesis

Applications in agriculture

- Animal tracking on farms
- Product traceability (cold chain, food supply, etc.)
- Precision irrigation
- Plant health and nutrition monitoring (for multi-seasonal plants)
- New applications include drones and robots for sensor readouts

Using robots to harvest information from RFID tags

The idea was first introduced in storage industry

Using robots to harvest information from RFID tags

Find the lost cargo in storage = find the lost sheep

Using robots with RFID tags

Any ideas for further applications?

Batteryless RFID sensors

- Differential leaf temperature measurements using baterryless passive RFID
- 0,5 °C resolution
- Relative measurements
- Using multiplexing to add more sensors (one sensor per readout)

Modular sensor design

Thank you for your attention

Boris Antić, Branko Brkljač, Zoran Mitrović

antic@uns.ac.rs