
Exercises

Practical implementation in Robot Operating System

Leibniz Institute for Agricultural Engineering and Bioeconomy e.V.

(ATB), Engineering for Crop Production - Agromechatronics,

Potsdam-Bornim

Germany

Tjark Schütte

Part 3: Practical Exercises

Let’s bring it all together: remote sensing, UGVs and RFID
sensors

2

The Scenario

UGV as a fast and energy efficient vehicle to monitor and
read out RFID sensors

UGV to perform actions, only when the data collected by UGV
indicates them

Before we dive into the practical work, some background
on ROS.

4

Quadrotor – Simulation (prev. slide): Institute of Flight Systems and Automatic Control, Technische Universität Darmstadt.

ROS

The Robot Operating System (ROS)

5

“ROS is an open-source, meta-operating system for your robot. It

provides the services you would expect from an operating system,

including hardware abstraction, low-level device control,

implementation of commonly-used functionality, message-passing

between processes, and package management. It also provides

tools and libraries for obtaining, building, writing, and running code

across multiple computers.”

(http://wiki.ros.org/ROS/Introduction)

Handling Data in ROS

ROS offers several functionalities and packages that make
handling and transforming data easier:

Topics using publishers and subscribers to make data
available

TF or TF2 to store and update coordinate
transformations between different frames (coordinate
systems)

6

ROS - Topics

7

ROS breaks down complex
systems into independent
software modules – so-called
nodes

For data transmission
between nodes, it uses topics
and messages

ROS Publisher and Subscriber .

Source: https://docs.ros.org/

ROS - Topics

8

ROS breaks down complex
systems into independent
software modules – so-called
nodes

For data transmission
between nodes, it uses topics
and messages

Topics don’t have to be point-
to-point ROS Publisher and Subscriber .

Source: https://docs.ros.org/

ROS – Callbacks

9

For handling/manipulation of
the incoming data, callback
functions are used.

The subscriber hooks a
callback to a specific topic

The callback is executed,
whenever a new message is
read by the node.

ROS Publisher and Subscriber .

Source: https://docs.ros.org/

Time for the First Exercise

Inside the virtual machine you have been handed, a ros-node
is playing back data of the UAV flying around and reading in
RFID sensors. It publishes:

The topic /uav1/fix the GPS coordinates

The topic /rfid_detections the RFID sensor ID and

humidity data

10

Time for the First Exercise

11

File Explorer

Terminal

Editor

The Code Explained

The programs mainly consist of a single class, the RfidReader
class, and a short main function

Inside the main we initialise a new ros-node and
instantiate (create) an object of the class

The object is where the magic happens

12

The Code Explained

The RfidReader class consist of a few attributes (class-specific
variables) and 4 methods (functions):

The __init__ function, that initialises the attributes and
the subscribers

The run() method that simply keeps the program
running

The gps_callback() that is executed when new GPS-
data comes in

The rfid_callback() that is executed each time our UAV
has detected a new RFID-sensor

13

First Exercise: Reading and Printing Out Data

Start the virtual machine (if you’re using your own ROS
installation launch workshop.launch from the
infield_robotics_workshop package)

Open Visual Studio Code

Task1.py should already open up

Type “rosrun infield_robotics_workshop task1.py” in the
terminal and hit enter

You should see printouts of the current gps position of
the UAV

To terminate press Ctrl+C

14

Let’s start! Task1 : Reading and Printing Out Data

Go to the editor and find the rfid_callback() function

Edit the printout statement in such way that apart from the
RFID-data we also print out the latest GPS position

There is more info in the commented code

To test your changes (in terminal):

“rosrun infield_robotics_workshop task1.py”

15

Task2: Reading and Saving Data

Open task2.py in the editor

Go to the editor and find the rfid_callback() function

Edit the printout statement in such way that apart from the
RFID-data we also print out the latest GPS position

There is more info in the commented code

16

Back to theory: Transforming Data

So now let’s say we do not just want to store the data but
directly tell our UGV to act based on it

Remember: ROS enables the sharing of topics and messages
across different machines, as long as they are part of the
same network

In order to send goals to a second robot, we need to send it
in a common coordinate frame

For this we use TF (transform library)

17

Measurement Registration and Georeferencing

Measurement registration is the process of transforming
data measured at different locations into a common
coordinate system

In Georeferencing this coordinate frame is world-fixed

“[…]georeferencing means to associate a digital
image file [or other measurement data]
with locations in physical space”. (Wikipedia,
Georeferencing)

18

Transforming Data

In order to transform data
from a local into a global
coordinate system we need
to know the rotation and
the translation between the
two frames

19

Transforming Data - Rotation

Rotation can be described by Rotation
Matrices

A vector is rotated by multiplying the
rotation matrix with it

General rotation matrices can be
derived as matrix product of
elemental rotations

Order of multiplication matters!

20

Rotation matrices for rotation

around the three main-axes, x, y, z

(basic/elemental rotation). Source

Wikipedia – Rotation Matrix

Transforming Data - Rotation

In robotics, the more compact representation of
rotation, quaternions is used:

Quaternions can be interpreted as describing a new axis
and an angle of rotation around that axis

Rotation using a Quaternion is done through:

21

Transforming Data - Rotation

In robotics, the more compact representation of
rotation quaternions is used:

Quaternions can be interpreted as describing a new axis
and an angle of rotation around that axis

Rotation using a Quaternion is done through:

22

For a nice, interactive tutorial and visualization of quaternion operations see:

https://eater.net/quaternions/video/intro

https://eater.net/quaternions/video/intro

https://eater.net/quaternions/video/intro

Transforming Data - Translation

Translation of a point is
achieved by simply adding the
position of the origin of the
local coordinate system to any
coordinates in the local
coordinate system

23

Transforming Data

For the combined rotation
and translation the position
of the point is first rotated,
then translated

Continuously computing the
rotation and translation of a
robot-fixed coordinate
system in a world-fixed
coordinate system is the
task of robot localization

24

ROS - TF

25

TF keeps track of all the
coordinate transformations in
our systems and stores them
in a tree structure – the TF-
tree

Transformations can either
be static (e.g. from the base
of a robot to a rigidly
attached sensor) or dynamic
(e.g. mobile robot position in
a georeferenced frame)

utm

Task3: Using TF to get Coordinate Transforms

Open task3.py in the editor

Go to the editor and find the rfid_callback() function

This function is now calling an additional function:
send_current_position_as_goal()

Edit this function in such way that you receive and print out
the transformation between the UAVs current position
(“base_link” frame) and the global “map” frame

There is more info in the commented code

26

References

27

Quadrotor – Simulation: Institute of Flight Systems and Automatic Control, Technische Universität
Darmstadt. Meyer, Johannes, et al. "Comprehensive simulation of quadrotor uavs using ros and
gazebo." International conference on simulation, modeling, and programming for autonomous robots.
Springer, Berlin, Heidelberg, 2012.

Simulation Environment: Gazebo-11 (Koenig, Nathan, and Andrew Howard. "Design and use
paradigms for gazebo, an open-source multi-robot simulator.“2004 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS))

ROS – documentation: https://docs.ros.org/

ROS-wiki: https://wiki.ros.org/

https://docs.ros.org/
https://wiki.ros.org/

ROS - RVIZ

RVIZ is a tool that
enables us to visualize
several standard ROS-
messages

28

Python – Variable Scope

Variables are generally only
available within function
scope in python:

A variable created inside
a function is only
available inside that
function

Global variables can be used
to overcome this but are
generally not recommended

29

Python – Objects

Object Attributes are available within the scope of
the object

30

