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* Land managers need efficient tools to analyze and manage huge
datasets.

* Efficient techniques for processing and summarizing data will be
crucial for effective management.

* Spatial data often turn out to be 'incompatible’ owing to their
heterogeneities in terms of nature (continuous or categorical),
quality (soft or hard data), and spatial and temporal scales.

* Complex spatial dependence and interdependence structures

among spatial variables contribute to making data fusion more
difficult.
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Statistical ap-iata fusion

* The support of spatial data is the physical volume over which the
value of a variable is measured or computed.

* In geostatistics, the concept of a regularized variable is one of the
key ideas and is strongly related to support. It represents the
average value over a volume v of a variable Z defined on a point
volume:

Z(0) — %‘ /‘Z(x)dx

* where |v| is called the support of Z(v) and x is the vector of two
(2D) or three (3D) coordinates (x,, x5, X;).

www.smart4all-project.eu 4



Statistical ap-ata fusion

* Many practical applications in Precision Agriculture use data
measured on small samples to estimate the variable of interest
over a much bigger unit (field or farm).

* Data can be associated with lines, surfaces, or volumes of any
shape.

* Developing a proper methodology for upscaling and downscaling
the data is crucial for accurate inference.
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The ‘ch-port’

* Spatial fields generally have a spectrum of variability including
different spatial scales: from long range to microscopic scale.

* The support effect is crucial when estimating the conditional
probability that the average over a specified area is below a
critical value.

* In agriculture, such a probability could be used to decide if
nutrients/water need(s) to be added to the soil.
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The ‘ch-port’

* Change of support problem (COSP) involves two inferential
issues.

* The shape of a variable averaged over spatial units is different
from the one of the original variable.

* Aggregation then tends to reduce heterogeneity among the units,
although it is more complicated by spatial autocorrelation.

* Inferences obtained at a given scale cannot be transferred to
another scale.
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Different s-o COSP

* Solving COSP is intended as the ability to make spatial predictions
on a given target (target support) by using data associated with a
set of supports (source supports).

* An approach should satisfy the following main requirements:
 explicitly accounting for the different supports involved;
* being able for upscaling from points to volumes;
* accounting for the uncertainties of the source data;
* integrating covariates of any type to improve predictions;
* preserving consistency in predictions across the scales;

* being easily implemented within a GIS to perform calculations involving
point-to-point.
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GIS operations

* Data in GIS applications are in either vector form or raster form.

* Typical GIS operations are union, intersection, and dissolve (on
vectorial data) or zonal averaging and pixel-by-pixel computations
on raster data.

* All these operations can be implicitly considered as fusion
operations.
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Geographical- regression

* Geographically weighted regression (GWR) differs from standard
linear regression for two aspects.

* It assumes that nearby observations are more similar than those
far apart.

* GWR is a very common but univariate method of spatial
interpolation, although it could be extended to multiple sources.
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Multiscal- models

* Multiscale tree models have several
advantages because they can work
with large datasets (Big Data).

* They are flexible to be used in a wide
range of applications.

* The main disadvantage consists in
the fact that they do not treat
explicitly COSP associated with
changes in resolution.
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Bayesian _models

* The most classical techniques of fusing information are based on
probability theory associated with Bayesian decision theory.

* A simple rule for fusing data at the prediction location is
assuming mutual independence for information at other
locations.
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* Geostatistics aims at providing quantitative descriptions of
variables distributed in space or in time and space.

* Examples of geostatistical applications can be found in
environmental and soil sciences, meteorology, hydrology,
ecology, remote sensing, fisheries, public health, and also in PA.
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Random function a-alized variables

* Classic statistics assume that the expected value of a given soil
property z, at a point x within the sampling area, is given by

z(x) = u+e(x)
* where u is the mean of the population and
* £(x) is a random variable.

* Classic statistical procedures assume, therefore, that the
variation within an area is randomly distributed.

* Regionalized variables established a better way to represent the
reality, introducing randomness in terms of fluctuation around a
fixed surface.
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The variogram

* The semivariance, y(h), represents the spatially dependent
component of the random function Z.

1 n(h)

v(h) = —— Z 1z(Xa) — 2(Xq + h)]2 g =1,....nm(h)

~
~
[am—y

* where n(h) represents the number of pairs separated by the
same lag distance.

* In the case of second-order stationarity, it can be expressed in

terms of spatial covariance, C(h), and spatial variance, C(0) of a
regionalized variable.
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The variogram

For each selected direction, the
semivariance is generally represented by a
graph of y(h) as a function of h.
Variograms must be conditionally negative
definite functions.

A high nugget value indicates a lack of
spatial correlation.

Variograms must be conditionally negative
definite functions.
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* Kriging is a linear technique that allows us to get unbiased
estimates of a regionalized variable in unsampled points.

* The kriging estimator is said BLUE (best linear unbiased
estimator) for its properties.

* Kriging calculates an error term (estimation variance) for each
estimated value, thus providing a measure of the reliability of
interpolation.
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* Cross-validation is a procedure to check compatibility between
the data and the model.

* It involves eliminating one data point and estimating its value
using the remaining data with kriging.

* Each estimate is compared with the measured value by
calculating the experimental error, i.e. the difference between
estimate and measurement.
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Multivariate methods

* In many cases, spatial studies consider two or more variables.

* A cross-variogram describes as the variable i is spatially related to
the variable j.

* The higher the correlation between the two variables, the more
similar the two direct (or auto) variograms are.

* Linear Model of Coregionalization (LMC) assumes that all
variables are a linear combination of the same basic structures,
each one corresponding to a given spatial scale related to a
specific process.
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» Cokriging is the multivariate extension of kriging formalism. It
allows dealing simultaneously with two or more variables defined
over the same domain.

* Like kriging, cokriging is quite flexible and applicable to a wide
variety of problems.

* It may require the inversion of large matrices to solve the linear system of
equations, which makes it computationally prohibitive with large datasets
(Big Data).

* An alternative is multicollocated cokrigging, which utilizes for
prediction only the exhaustive variable(s).
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Kriging -I drift

* When the assumption of spatial stationarity does not hold for the
variable of interest, alternative solutions have to be used.

* The basic hypothesis of kriging with external drift is that the
expectation of the variable can be modeled as the sum of
polynomials and linear functions of secondary variables.
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Geostatistical approa-a fusion and COSP

* The key idea of kriging is that any block variogram (covariance) of
z(B) can be determined from the underlying point process z(s).

* The method can be used for upscaling (aggregation),
downscaling, and side scaling.

* COSP is based on the knowledge (from observations) or
calculation of the point covariance (variogram) function.

» Cokriging equations contain the direct and cross-covariance
functions of each variable.
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Application of geostatisti-n in proximal sensing

» Satellites collect data over discrete areal regions called footprints,
which represent aggregated views of underlying continuous processes.
A satellite can survey only a limited portion of the space-time domain.

 Many methods have been proposed for image fusion, including the
intensity-hue-saturation (HIS) method.

 Cokriging explicitly takes into account the pixel size (support) of each
image.

* A typical application of cokriging is processing coregistered images with
different spatial resolutions in the different spectral bands.

* An example is using Sentinel-2 satellite sensor images to increase the spatial
coarse resolution (60 m) of the bands 1, 9, and 10.
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Application of geostatis- in proximal sensing

* The problem of predicting a fine spatial resolution image with
cokriging can be solved by fusing images with different spatial
resolutions in different spectral bands.

* The method implies numerical deconvolutions for estimating the
covariances and cross-covariances with point support.
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Application of geostatisti-n in proximal sensing

* PA is based on the assumption that optimum benefits on
profitability and environmental protection depend on the level of
agreement between agricultural practices and local conditions.

* It is quite critical for PA to assess spatial and temporal variation of
soil/plant accurately and locally at a very fine scale.

* New approaches are needed to analyze massive datasets more
efficiently.

* Multicollocated cokriging can make such a data fusion possible.
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Application of geosta_in proximal sensing

* When various complementary
sensors are available (Fig), it is
expected that sensor data fusion
or data integration may perform
inferences potentially more
accurately than the ones
achieved by a single sensor.

Multisensor platform at CREA-AA, Italy
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Data fusion _ approach

* The main procedures required by a geostatistical approach to
fuse multitype datasets:
* Sample data migration
* Gaussian anamorphosis modeling
* LMC fitting
* LMC regularizing on block support
* Block cokriging performing
* Factorial block cokriging performing

www.smart4all-project.eu
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Data fusi

Flowchart of the proposed geostatistical data fusion approach.
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Case study

 Case study aims to investigate the scale-dependent correlation
structure of a multivariate input dataset, including some soil
variables, fine-scale terrain data, and geophysical measurements
of soil bulk electrical conductivity.

* Main objectives are to provide a thematic map of soil attributes
and to determine a few spatial scale-dependent indices for the
delineation of homogeneous within-field areas.
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Regionalized factors at (A) short-range (140 m) and (B) long-range (500 m).
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