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Abstract—Motivated by the recent trends in the field of em- 
bedded vision platforms, we discuss potential of such solutions 
in providing foundations for the next generation of Cyber- 
Physical Systems (CPS). Improved capabilities and reduced price 
of these platforms will have profound effect on their everyday 
usage and applications. In comparison to speech and natural 
language processing, which have established speech recognition 
and machine translation applications as indispensable in many 
contemporary CPSs, the vision community is still searching for an 
application that would be so necessary and desirable to make most 
of the consumers buy specific vision hardware just to run it. That 
would be the ultimate proof of the core value of the technology in 
the market. Thus, also vision problems come with a longstanding 
tradition and history of numerous solutions, it is still hard to 
point out a single application that would incorporate many specific 
vision tasks into one device, and which would be ubiquitously 
useful and affordable to all (e.g. like smartphone has done in 
the fields of communication and personal computing). However, 
with development of new miniaturization technologies and spatial 
AI it is reasonable to expect that there will be more possibilities 
for designing CPS with capabilities of visual understanding of 
outdoor, dynamic and uncontrolled environments. One step in such 
direction are embedded vision platforms that besides powerful 
computing capabilities also provide multimodal perception, and 
thus improve the algorithm performance. As an example, we will 
discuss stereo depth perception in the context of new spatial AI 
platforms like OAK-D lite, and point out some possibilities for its 
improvement and integration into future CPS. 

Index Terms—CPS, embedded vision, multimodal perception, 
spatial AI, depth from stereo, OAK-D lite; 

 

I. INTRODUCTION 

Visual perception plays important role in understanding the 
world by humans and the machines [1]. It is a basic step in 
visual information processing and foundation of vision based 
inference. Thus, it represents the key enabling technology for 
mobile robotics, outdoor navigation, autonomous driving and 
many other contemp. Cyber-Physical Systems (CPS) [2, 3]. 

Embedded vision platforms are the next step in the design 
and development of technical devices that provide such ca- 
pabilities. They offer seamless integration of camera devices 
and computing platforms that are highly optimized for exe- 
cution of computer vision algorithms. Instead of being large 
and expensive, platforms are usually designed to have small 
size, low cost, low energy consumption and low weight [4]. 
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Although, in some specific applications that are dealing with 
strict requirements or targeting only a small set of vision 
tasks (like in some manufacturing processes, measuring devices 
or machines), all of the above mentioned characteristics are 
not always the priority and some of them can be discarded. 
However, in the case of general embedded vision platforms, 
which are not tailored for some specific need, such features 
are always welcomed and make the system easier to fit into 
some larger CPS and the corresponding application scenario. 

Small form factor and efficient use of power resources, at 
low cost, are always contrasting performance and diversity of 
capabilities that device offers. In that sense, it is hard to find a 
platform that would be a one-size-fits-all solution, Fig. 1. 

This is especially true in vision, where many tasks have 
different levels of complexity and can vary significantly de- 
pending on the environnement. Historically, many of the vision 
applications that require visual understanding of the scene 
or precise measurements were oriented towards static and 
controlled indoor environments. This is not surprising, since 
it is always easier to search for solution under assumptions 
that make the problem more constrained and less general. 
However, challenging problems are always opportunity for 
wider adoption of vision technologies, so sentiment towards 
solving of problems ’in the wild’ is steadily growing. 

 

 
Fig. 1: Jetson Nano [5] with camera extension board and coax- 
ial cable, in comparison to OAK-D lite [6], which integrates 
three cameras and processing board in a single case. 
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General vision tasks ’in the wild’ are always considered as 
harder or at least more sophisticated. E.g. the gait recogni- 
tion has been the subject of many investigations, but up to 
recently the quality of cross-view recognition was limited by 
the characteristics of available datasets that were recorded in 
controlled environment [7]. Similarly, some complex tasks that 
are relatively easy for humans require 3D understanding of the 
environment [8]. Even the optical character recognition (OCR) 
and text digitization, which have been considered as prime 
examples of vision tasks performed in controlled environments 
by the line scan sensors and their variants, have evolved from 
the methods that are considered as standards for OCR in the 
software industry [9], into numerous solutions oriented towards 
uncontrolled environments [10]. As a result, these trends are 
also reflected into design of novel embedded vision platforms 
that support development of spatial AI. 

Spatial AI is a term that can be attributed to Davison [11]. 
Accordingly, devices with such capabilities should operate in 
real-time, in a context and with goals. In that sense, the term 
goes beyond visual perception of complicated 3D environments 
and abstract scene understanding. Besides, it also involves 
learning of optimal signal representations and continuous cap- 
turing of right information that will jointly enable real time 
interpretation and action [12]. CPS incorporating such func- 
tionalities can be regarded as spatial AI enabled. 

The rest of the paper is organized as follows. In Section II 
we introduce the multimodal perception paradigm. Next, design 
of a recently proposed embedded vision platform with passive 
camera sensors and native depth perception capabilities is 
discussed in Section III. Finally, in Section IV we briefly 
reexamine possibilities for improvement of depth perception 
based on stereo vision and suggest necessary requirements for 
incorporating such solutions into CPS with depth perception 
functionalities. At the end, the paper is concluded in Section V, 
with a reference to future work and possible applications. 

II. CPS AND  MULTIMODAL  PERCEPTION 

If it is expected to achieve wider adoption of CPS in the 
future, human-machine interactions will need to be carefully 
designed functionalities of the next generation CPS. This will 
improve the overall user experience, but also make the added 
value brought by CPS more easily recognized by the society. 
In that sense, vision tasks like facial expression recognition or 
person identification will require human level performance in 
order to gain necessary trust among the CPS users. E.g. thanks 
to advanced attention-based feature fusion, current solutions in 
the field of facial expression recognition are more robust to 
occlusions and variant head pose [13]. However, in order to 
achieve human level performance, or go beyond, such systems 
will also need to exploit 3D facial information [14] and perform 
multimodal feature fusion [15] – in addition to novel learning- 
based feature engineering. 

neural network models that are tailored for odometry and depth 
perception based on monocular videos [17, 18]; or c) come 
from some dedicated hardware like stereo camera rigs or active 
camera sensors [19, 20], such complementary information will 
be necessary to ease the problems and accomplish the vision 
tasks more successfully. 

Uncertainty reduction provided by implicit or explicit use 
of 3D information is expected to bring complex vision func- 
tionalities to everyday life and uncontrolled environnements. 
Therefore, domain of multimodal perception will be of partic- 
ular interest for product positioning and research field where 
different solutions will be competing for their place on the 
market (besides ’standard’ characteristics like computational 
power, efficiency and support for deep neural network (DNN) 
inference). Embedded platforms capable of providing necessary 
level of 3D perception with low energy consumption will be a 
preferred choice for solving vision tasks in future CPS. 

III. NATIVE  DEPTH  FROM  STEREO 

Implementation of spatial AI goes hand in hand with hetero- 
geneous computing environnements. When it comes to depth 
perception, embedded vision platforms of new generation, 
like OAK-D lite [6], Fig. 1 and Fig. 2, have significantly 
evolved in comparison to their predecessors. E.g. ’Bumblebee’ 
devices [21], once considered as the industry standard for 
mobile robotics, were designed to have a pair of calibrated 
stereo cameras in a metal case, but without any processing 
capabilities. Instead, the computational load of determining 
depth of the scene was usually transferred from the acquisi- 
tion device to external computer, which had to detect image 
correspondences and estimate disparity maps. However, due to 
lack of an efficient implementation over a specialized hardware, 
such approach was usually resulting in small frame rates [19], 
or led to non real-time processing in cases when the perception 
accuracy was the main design priority. 

Stereo vision is often perceived as more robust to ambient 
illumination than ToF cameras. For example, Kinect [22], is 

 
 

(a) 

The prevailing opinion in the vision community is that the 
general trend in the future will be towards providing CPS with 
multimodal information about its surrounding [16]. Therefore, 

 
(b) 

(c) 

regardless of that whether the 3D information will be result 
of: a) advanced 3D reconstruction, like in [14]; b) pretrained 

Fig. 2: (a) Global shutter stereo pair, and a 4K video camera; 
(b) back cover of OAK-D lite; (c) hardware acceleration steps. 
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not suitable for outdoor applications due to the interference of 
the direct sunlight with the camera emitter in the near-infrared 
range. If presence of textureless objects in the scene makes 
dense image correspondences harder to learn, high resolution 
depth maps can also be hard to produce by stereo vision, 

requiring a more complex image descriptors or structured 
light projection [23]. In general, active illumination makes any 
approach less suitable for outdoor applications and spatial AI. 

Thanks to novel computing architectures, contemporary em- 
bedded vision platforms are closer to the concept of edge 

AI and processing of the information at the place of their 
acquisition. For the purpose of this paper we have performed 

some outdoor tests and generated results shown in Fig. 3. 
Platforms like [6] can produce VGA resolution depth maps with 
high frame rates [24], but are also capable of other processing 
tasks, like real time inference using pretrained DNNs, or HEVC 
4K hardware video encoding [25]. E.g. Intel’s Movidius chip 
[26], which is positioned on the backside of the processing 
board, theoretically produces up to 4 TOPS, out of which 1.4 
TOPS for ’neural compute engine’. Besides 16 CPU cores for 
image signal processing, it also provides dedicated hardware 
accelerator for custom DNN models made in standard deep 
learning libraries, and several predefined hardware accelerators 

for standard vision tasks. Although on-device development 
through firmware change is not allowed, there is a possibility to 
exploit available neural network interface to implement custom 

computational graphs corresponding to computationally heavy 
vision tasks. 

As depicted in Fig. 2c, the first step in such procedure is 
to define a dummy neural network model, which is defined 
in usual way using standard programming interface in some 
of mainstream DNN libraries. In the next step, created com- 
putational graph description in ’.onnx’ format [27] is further 
optimized by ’onnx-simplifier’ [28]. Finally, after the generated 
model description is compiled to necessary ’.blob’ format, 
which is standard for similar hardware accelerators based on 
Movidius MyriadX VPU architecture [29], the model is ready 
to perform ’neural inference’ on input data. 

IV. APPLICATIONS  IN  CPS 

Described platform [6] is only one of several available in the 
market [5, 29, 30]. It was developed as the result of an open 
funding campaign initiated by the vision community gathered 
around OpenCV project [31]. In order to make the platform 
more affordable and widely applicable, some characteristics 
have been chosen to be less top notch in comparison to 
capabilities of the chip and the processing board. E.g. spatial 
resolution of stereo cameras was chosen to be smaller, while an 
inertial measurement unit was left out, although the allocated 
space and connectors still exist on the designed circuit board. 
On the other hand, platforms like [30] highlight the advantages 
of reconfigurable hardware based on the FPGA technology, 
which can also be foundation for similar embedded vision 
platforms. Key advantage of [6, 30] over [5] is a more compact 
design and no need for additional camera hardware, while [5] 
has richer I/O interface, GPU with CUDA support, and does 
not require an additional microcontroller or host computer. 
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(e) 

Fig. 3: Real time depth perception, video encoding and neural 
inference performed simultaneously on device in Fig. 2. (a)- 
(b) left and right camera view; (c) central camera; (d) detections 
based on image in (b); (e) computed disparity map. 

 
In this study we have investigated capabilities of platform 

[6] in the context of potential applications in CPS. As shown 
in Fig. 3e, it has successfully demonstrated effective depth 
perception, with high level of hardware integration, Fig. 1. 
However, our tests have also confirmed that there is space for 
significant improvement of depth perception quality provided 
out of the box by the same platform. As the result of additional 
experiments, illustrated in Fig. 4, which were conducted based 
on the implementation provided in [32], it was concluded that 
strategies for possible improvements of depth perception quality 
should rely on DNNs and their high learning capacity. 

In Fig. 4, next to each other are the results of an ’on device’ 
depth perception performed out of the box by [6], and the 
perception experiment based on the same stereo images by 
using the method proposed in [33] and the implementation 
from [32]. The host computer was equipped with high-end GPU 
and support for tensorRT inference engine [34], which enabled 
real time performance. However, the hardware requirements 
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(a) (b) 

Fig. 4: Visual comparison of performed stereo depth perception 
experiments: (a) ’on device’ solution based on [6]; (b) ’on host’ 
solution based on method from [33] and the same image pair. 

 
and power consumption were much higher in comparison to 
[6]. Therefore, a solution for higher quality depth perception 
in CPS applications would be to combine different embedded 
platforms, and leverage the best from each of them. For 
example, Jetson Nano in Fig. 1 also supports tensorRT engine 
and could perform ’on the host’ tasks, like the one from [33]. 

Some CPS applications that would benefit from such im- 
proved perception are e.g. [35] or [36], where embedded vision 
platform was mounted on small UAV and provided vision 
capabilities necessary for autonomous drone navigation. 

V. CONCLUSION 

Embedded vision platforms are expected to bring novel 
CPS functionalities and provide multi modal perception in 
outdoor environments. Different research groups are working 
towards lowering the cost of such solutions and enabling the 
technological base for spatial AI. Depth perception solutions 
that were experimentally compared in this work are only 
one example of such efforts. Performed tests have confirmed 
promising characteristics of the recently proposed platform [6] 
and identified possible advantages of its combination with the 
existing solutions like [5]. We hope that presented information 
and experimental comparisons will provide more insights and 
make integration of similar devices in CPS easier. Our future 
work will be oriented towards the improvement of the existing 
algorithmic techniques and their efficient implementation. 
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